Some Algorithms Providing Rigorous Bounds for the Eigenvalue of a Matrix

نویسنده

  • R. Pavec
چکیده

Three algorithms providing rigourous bounds for the eigenvalues of a real matrix are presented. The first is an implementation of the bisection algorithm for a symmetric tridiagonal matrix using IEEE floating-point arithmetic. The two others use interval arithmetic with directed rounding and are deduced from the Jacobi method for a symmetric matrix and the Jacobi-like method of Eberlein for an unsymmetric matrix. 1 Bisection Algorithm for a Symmetric Tridiagonal Matrix Let A be a symmetric tridiagonal matrix of order n: A = An =  a1 b2 b2 a2 . . . . . . . . . bn bn an  Set b1 = 0, and suppose bk 6= 0, k = 2, . . . , n. The bisection method is based on the fact that the sequence dk(x) of principal minors of A − xI is a Sturm sequence: dk(x) = det(Ak − xIk), k = 1, . . . , n, d0 = 1 In floating point arithmetic, as pointed out in [Barth, Martin, Wilkinson 1971], the direct use of this sequence is quite impossible: even for small n underflow and overflow are unavoidable. So they consider (the hypothesis bk 6= 0, k = 2, . . . , n can then be removed): pk = dk dk−1 , k = 1, . . . , n This new sequence satisfies the recurrence relations: (Sx) pk :=  ak − x if bk = 0 or pk−1 = −∞ −∞ if pk−1 = 0 ak − x− b 2 k pk−1 otherwise for k = 1, . . . , n Journal of Universal Computer Science, vol. 1, no. 7 (1995), 548-559 submitted: 15/12/94, accepted: 26/6/95, appeared: 28/7/95Springer Pub. Co.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the Co-PI index of a graph

In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

APPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK ‎PRICES

The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical ‎Structures.‎ In ‎this work‎, we analyze cross-crrelations between price fluctuations of 20 ‎company ‎stocks‎...

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1995